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Active water-wave absorbers 

By JEROME H. MILGRAM 
Massachusetts Institute of Technology 

(Received 18 August 1969) 

The problem considered is that of absorbing two-dimensional water waves in 
a channel by means of a moving termination at the end of the channel. The 
problem is formulated for a semi-infinite channel and solutions are determined 
according to a linearized theory. The motion of the termination that is needed for 
absorption is determined in the form of a linear operation on the measured surface 
elevation at a fixed point in the channel so a self-actuating wave-absorbing 
system can be devised. A theoretical method of studying the stability of such 
a system is presented. A system of this type was built and experiments with it 
are described. Wave absorption is demonstrated both for monochromatic waves 
and for wave pulses. The absorption of a wave pulse is compared with the 
absorption of the same pulse by a fixed beach making a ten degree angle with 
the horizontal direction. 

1. Introduction 
The experimental verification carried out by Ursell, Dean & Yu (1960), of the 

wave-maker theory of Havelock (1929) suggests the possibility of absorbing two- 
dimensional waves of small steepness, which are incident on a termination of 
a channel, by means of a particular motion of this termination. One way to 
envisage such a situation for the linearized problem is by superposition. If the 
channel termination were motionless, a wave would be reflected away from the 
termination when a wave was incident upon it. It is reasonable to expect that 
a termination motion could be found which would generate a radiated wave that 
was exactly opposite to the reflected wave. According to the theory of Havelock, 
the non-radiated component of the fluid motion is negligible at  distances more 
than one-half a wavelength from the termination. If such a situation exists, the 
channel behaves as though there were complete absorption, except for regions 
near the termination. 

An interesting possibility is to measure some aspect of the fluid motion, 
determine the termination motion needed for absorption in terms of an operation 
on the past history of this quantity, and drive the termination such that its 
motion is a close approximation to this motion. If this can be done, and the entire 
system is stable, a usable wave absorber would result. 

One measurable quantity which seems attractive for operating on, in order to 
determine the termination motion, is the force exerted on the termination by the 
fluid. In the experimental work reported here, the termination was a hinged 
paddle. The incident waves were impinging on one face of the paddle and there 
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was a short, fluid-filled space between the opposite face and a fixed wall. The 
fluid motion in this space contributes to  the force on the paddle; and since this 
fluid motion is resonant a t  certain frequencies, it is not practical to activate the 
paddle on the basis of measured. force. The measured quantity used here is the 
surface clevation a t  a point a short distance from the paddle. 

2.1. Foymulation of the problem 2.  Theory 

The two-dimensional motion of an inviscid, incompressible fluid in a semi- 
infinite channel is considered. A Cartesian reference frame will be used in which 
the free surface rest position is a t  y = 0, the bottom of the channel is a t  y = - h 
and the rest position of a moving termination of the channel is a t  x = 0. Small 
amplitude waves are generated a t  x = - OC). It is assumed that the motion of the 
channel termination is small in the sense that the deviation from vertical of the 
slope of any point on the terminakion is small; and that the horizontal excursion, 
Y(y, t ) ,  of any point on the termination from the rest position is small. The fluid 
motion is assumed to  start from an irrotational state so that the fluid velocity 
can be represented by the gradient of a scalar potential, 6, satisfying 

subject to  the boundary conditions 
(1 )  

@‘tt+y@’v = 0 on y = 0, ( 2 )  

OU:= 0 on y = - h ,  (3) 
@, = Ypt on x = 0, (4) 

IV@( < 00 a t  X = - C Q .  ( 5 )  

V2aJ = 0, 

Three particular questions must be answered. First, if a sinusoidal wave is 
generated a t  x = -00, and propagates towards the termination, what must 
Y(y, t )  be in order that  there is no reflected wave? Secondly, can this Y(y, t )  be 
determined as a linear functional on the past and present, but not future, values 
of some measurable quantity of the fluid motion? Thirdly, if the termination 
motion is given by a prescribed linear functional on a measured quantity of the 
fluid motion, is the system stable? The remainder of this paper is addressed 
toward answering these questiona. 

2.2.  Solution for the$& motion 
The problem posed by equations (1) to ( 5 )  with a time dependence of the form 
e-iht is essentially the same as the wave-maker problem solved by Havelock 
(1929) for real values of A. This time dependence will be considered here, but h 
will be allowed to  be complex in order to study the stability of wave-absorbing 
systems. When h is complex, the boundary-value problem (1)-(5) is no longer 
self-adjoint. Solutions to  (1) will be determined in the form 

where 
and 



Active water-wave absorbers 847 

The f,’s are the complex solutions for f of 

f h  tanh fh = h2?b/g. 

fh = 2 = 2, + iz,. 

(9) 

(10) 

There are infinitely many solutions for f, being fo, fl, fi, . . . . Let 

A fundamental region in 2 for ZtanhZ is 0 6 zi < +r, -00 < z, Q CO. This strip 
maps into the entire complex plane. The strip - in- < xi < 0, - 00 6 z, < co is also 
a fundamental region as are the strips (n - 4) n- 6 zi < (n + 8) r, - 00 < z, 6 co, for 
any positive integer n, and the strips (n - +) rr < zi < (n + +) n-, - 00 d z, < 00 for 
any negative integer n. Equation (9) has a solution on each strip. Since (9) is even 
in f, if f, is a solution, - f k  is also a solution. The boundary condition of bounded- 
ness at  x = - 00, ( 5 ) ,  is satisfied only by eigenfunctions, F,(x) G,(y), for which 
Im f, 2 0. Therefore there is one eigenvalue fk and one associated eigenfunction 
on each strip above the real axis of the 2 plane. The only strip below the real axis 
that can contain an eigenvalue and associated eigenfunction is the strip below 
and adjacent to the real axis, and this is permitted only if this eigenvalue is real. 
Thus $(x, y) can be expressed as 

00 

$(x, y) = A; coshf,(y + h) ecifoX -i- I; A ,  cosh f,(y + h) eifaz. (11) 
n=O 

Here, fo is on the strip adjacent to and above the real axis of the Z plane and 
f, is on the strip (n-+)r 6 zi < (n+$)n.  If Imfo + 0, Ah = 0. 

Suppose the motion of the channel termination is given by 

Y (y, t )  = B?I.(y) e-iM, (12) 

where $( y) is a known, real function determined by the mechanics of the termina- 
tion and B is a complex constant. The boundary condition at  the termination, (4), 
requires that 

m 

(AO-A~)coshfo(y+h)+ An f,coshf,(y+h) = -Bh$(y). (13) 
n= 1 

If h is complex, the f’s are complex and since the boundary-value problem is not 
self-adjoint, the eigenfunctions G,(y) are not orthogonal. 

for all k when n + k, if h is complex. 
However, the Gk’s do satisfy 

G,(y) Gn(y) dy = 0 for k + n. 

Therefore, for n = 0, A,,-A; 
for n + 0, A, 

where 

and 
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As an example, the problem of determining the fluid motion is solved here for 
the case where the termination is a paddle hinged at  y = - p ,  with a solid wall 
between the pivot position and the bottom of the channel. For this termination, 

1 Y+PP, YZ-P, 
Y -P, 

@(Y) = { o, 

(20) 
1 

and Ig) = 2 sinh fnh +--, [cosh fn(h -p) - cosh f ,  h]. 
f n  f n  

The paddle angle, 8, is given by 

Equation (16) does not uniquely specify A,  or A& but gives their difference. 
If h is complex, boundedness of  the fluid motion at  x = -00, (5 ) ,  requires that 
A; = 0. If h is real, identical solutions for the fluid motion are obtained if h is 
replaced by - A. To be definite, if A is real, take A > 0. Similar remarks apply to 
f, which is real if h is real, so take f, > 0 if A is real. Then A ,  is the coefficient of the 
positive-going wave generated at  x = -a. For a known value of A,, (16) 
determines A;. 

If sinusoidal waves are generated at .2: = -a with a velocity potential of 
amplitude A,, Ah is the amplitude of the velocity potential of the reflected wave. 
For complete absorption, Ah = 0,  in which case (16) requires that 

For complete absorption with the hinged paddle termination, 

B = - ! ? A  f 2  -~ 2f0 h + sinhf, h 
4h Opf, sinhf, h + cosh f,(h -p) - cosh f ,  h ' (23) 

The surface elevation, N ( x ,  t ) ,  can be obtained from the velocity potential by 
use of the kinematic free surface condition, 

Qg = Nt at  y = 0. 

N ( x ,  t) = ~ ( x )  e-i" Expressing N in the form 
and using (25) gives 

1 "  
~ ( x )  = -: f o  sinhf,h(A,eifo"+A'e-~fo~ , )--;- 2 fnAnsinhfnheifnx. (26) 

zh zA 
The problem at hand is to determine the termination motion as a linear operation 
on the past history of the surface elevation at a point, say at  x = - d .  The fre- 
quency dependent ratio of the complex amplitude of the termination motion, B, 
to the complex amplitude of the surface elevation at  x = -d ,  q( -d ) ,  for no 
reflected wave is called H,(A) and is given by 

m 

H,(A) = i - e-ifndsinhfn h. J n = O  I p  

Let h,(t) be the inverse Fourier transform of &(A). 

(27) 
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where H,(h) for negative h is defined by H,(h) = H:( - A).  The time-dependent 
amplitude of the termination motion b( t )  for no reflected wave is then given by 
the convolution of the surface elevation at x = - d, N (  - d, t ) ,  and h,(t). 

rcn 
b( t )  = J N (  - d, t - T) h , ( ~ )  d7. (29) 

--m 

If h(t)  = 0 for t < 0, then b(t) depends only on the past values of N (  - d, t ) .  It is 
reasonable that h(t)  equals zero for t < 0 as this would be implied by a criterion 
that the termination be motionless before any incident wave front reached it. 

C F 

FIGURE 1. The wave-absorbing termination. - - -, Rest position of the free surface (y = 0) ; 
......, rest position of the absorbing termination (z = 0); S ,  surface elevation sensing 
probe; T, surface elevation to voltage transducer; P ,  active electric filter; C ,  position 
control actuating signal ; P,  electric components of the position control servo-mechanism ; 
M ,  position control servo-motor; R, paddle drive rod; D, paddle; B, position feedback 
signal ; 0, paddle angle. 

However, a proof that h(t) = 0 for t < 0 requires demonstrating that Ha@) is 
analytic everywhere in Im h > 0. Rather than attempt to carry out this demon- 
stration, the experiments are appealed to, where H,(h) is approximated by a 
function that is analytic in I m h  > 0 and waves are absorbed by the resulting 
system. Equation (29) holds for any incident wave time dependence, not only 
e--iAt. 

2.3. Xtability of wave-absorbing systems 

It is assumed here that a linear electro-mechanical device, taking the surface 
elevation at  x = -d  as input and providing the amplitude of the termination 
motion as output, has a complex ratio of input to output amplitudes given by 
H,(h). The method of synthesizing H,(h) in a realizable form is described in the 
appendix. 

A wave-absorbing system, activated by the surface elevation at x = - d  is 
shown in figure 1. For such a system to be usable, it must be stable. An unstable 
system is taken to mean a system for which a small disturbance generated by the 
termination grows ceaselessly with increasing time. Since motions having the 
time dependence e--iAt are considered, the system is unstable if there are any 
normal modes for which Im h > 0. 

54 F L I l  4 2  
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The hydrodynamics of the problem specifies a relationship between the com- 
plex amplitudes of the termination motion, B, and the surface elevation at  
z = -d .  The ratio of these complex amplitudes is called H,(h). To avoid 
ambiguity, take Ref, > 0 which can be done arbitrarily because if f, is an 
eigenvalue, -fo is also an eigenvalue. Then A,  is the coefficient of a wave travel- 
ling towards the termination which is taken to be zero when normal modes of the 
system are being determined 

Using ( l6) ,  (21) and (26) yields 

However, the termination driving system requires that 

(31) 
B -- - He(h)* 

[7 lz=-d  

He(h) = HI’(4. (32) 

Equations (30) and (31) can be satisfied simultaneously if and only if 

This is the characteristic equation of the system. Any values of h for which (32) 
holds when A ,  = 0 are natural frequencies of the system. If, for any of these 
values of A, Im ( A )  > 0, the system will be unstable at  that frequency. If (32) 
holds for real values of A, the system will be neutrally stable at  that frequency. 

One way to find any values of A for which (32) holds is to search the complex h 
plane point by point to find which points, if any, give a solution to (32). Since 
this is very tedious, a method essentially the same as that used by Nyquist (1932) 
is recommended instead. 

Let (33) 

The zeros of q(h) give the natural frequencies of the system. It is assumed that 

It is further assumed that 
H,(h) has no poles in the upper half of the h plane (see appendix). 

This is a good design criterion to use in order to minimize the effects of high 
frequency noise. Hh(h) has no zeros on any finite part of the h plane, which along 
with the above assumptions about H,(h) implies that q(h) has no poles on the 
upper half of the h plane. 

Consider the closed contour comprised of the real axis and the upper infinite 
semi-circle in the h plane. From the theorem of the principle of argument, the 
number of zeros of q(h) inside a closed contour containing 110 poles of q(h) is 
equal to 1/2n times the change in the argument of q(h)  observed when traversing 
the closed contour once in the positive sense. Now consider the contour in the 
complex q plane onto which the closed contour in the h plane maps. The number 
of times this contour encircles the origin of the q plane equals the number of 
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zeros of q(h) in the upper half of the h plane. The mapping of the upper semi-circle 
of the q plane does not encircle the origin of the q plane since on this semi-circle, 
Req(h) > 0. Therefore, if the mapping of the real axis of the h plane does not 
encircle the origin of the q plane, the system is stable. Hence the stability of the 
system can be assessed by examining the values of q(h) only on the real axis of 
the h plane. 

W 

i - He(h) C (IF)/Ig)) sinhf, h e-ifn 

i + &(A) [ (I$2)/#)) sinhf, h e-+od - C (lE)/Ihl)) sinhf, h e i fnd  

n=O - 

I € ( A )  = W 

n = l  

. (35) 

3. The design of a wave-absorbing system for a hinged paddle 
absorber 

I n  this section the design of a function, He(h), is carried out for the absorber 
used in the experiments. The absorbing termination used is of the hinged paddle 
type as described in the example of 0 2.2. The physical parameters for the channel 
used in the experiments are : 

g = 980.6cm/sec2, (36) 

h = 12*70cm, (37) 

p = 11*42cm, (38) 

d = 508cm. (39) 

The frequency range over which wave absorption is desired is from three to 
thirteen radians per second. H,(h) must closely approximate H,(h) over this 
range. Using (18) and (20)) &(A) is given by (27). H,(h) is shown for h between 
three and thirteen radians per second in figure 2. Observation of this figure shows 
that H,(h) should behave roughly like - i/h. However, one design constraint is 
that H,(h) have a zero at h = 0 to prevent drift. Therefore, let 

where a is a negative imaginary number having a magnitude considerably less 
than the lowest radian frequency at  which wave absorption is desired. a is arbi- 
trarily chosen to be - 0-4i. For complete absorption, 

54-2 

2.4. The rejClexion coeficient of a wave-absorbing system 

Since H,(h) is not exactly equal to H,(h) in general, an active wave absorber will 
not necessarily absorb waves completely. To determine the reflexion coefficient, 
(32) is applied for the case when A,, + 0. The reflexion coefficient is then given 
by IA,!,/A,I which will be called € ( A ) .  
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[ - ( A  + 0.4i)2/h] HJA)  is shown in figure 2. This indicates that Ui(A) should have 
more poles than zeros. Choosing a function having one zero and two poles on the 
imaginary axis of the A plane t o  approximate Ht(A) and optimizing their location 
to minimize the mean square error as described in the appendix gives the 
following function, H,d(A), for a, design of H,(A): 

18 
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12 
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6 

4 

2 

h(h + 10.70i) 
( A  + 0*4i)2 ( A  + 49-97i) ( A  + 82.29i) ’ 
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To determine whether or not a wave-absorbing system having a filter-system 
function @(A)  as given above is stable, the mapping given by (33) of the real axis 
of the h plane in the q plane is :shown in figure 3. Since the arc does not encircle 
the origin of the q plane, the system is stable according to 9 2.3. 

4. Experiments 4.1. Experimental apparatus 

An aluminium wave channel was built, having a length of 335cm, a depth of 
19.1 cm and a width of 30.5 cm. The side walls were kept plane and parallel to 
a tolerance of 0.02 cm by means of adjustable brackets on each side wall, outside 
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the channel, spaced 30-5 em apart, except near paddles fitted at each end of the 
tank where the brackets were more closely spaced. The aluminium paddles were 
0.635 cm thick and had their pivots 1-27 cm above the bottom of the channel. 
There were solid plates between the pivots and the channel bottom. The distance 
between the inside faces of the paddles was 305cm when both paddles were 
vertical. The channel was filled with water to a depth of 12.7cm. 

FIGURE 3. q(h) for real values of h from the example in (3) and (4). The contour shown is 
the mapping of the real axis of the h plane given by (34) (w = Reh). Numbers at the points 
are the values of w in radians/sec. 

An adjustable speed motor was attached to one of the paddles through an 
adjustable bell crank mechanism for purposes of making waves of adjustable 
height and frequency. A capacitance-type surface elevation transducer with 
a 0.159 cm diameter probe was attached to a motor driven carriage to be able 
to scan the surface elevation at different positions. The capacitance probe was 
vibrated vertically at  120 Hz to avoid errors due to variations in the meniscus. 
The 120 Hz signal added to the surface elevation signal was filtered out. This 
transducer gave an output proportional to the surface elevation (Milgram 1965). 
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The wave-absorbing apparatus is shown schematically in figure 1. A second 
surface elevation transducer .was installed with its probe 5-08cm from the 
vertical rest position of the paddle. The output voltage from this transducer 
served as input to an active eloctric filter having a system function HF(h). The 
output voltage from the filter was used t o  activate a position control servo- 
mechanism. The wave-absorbing paddle was driven by the servo-motor through 
a rack and pinion drive. 
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FIGURE 4. The designed system function, Hf(h ) ,  and the measured system function, H r ( h ) ,  
for real values of A. --, Ht(h)  ; 0 ,  IH?(h)I ; x , m g  [H?(h)]. 

An active electric filter was built to have the system function H$(h) as given 
by (42). Since small errors in the; parameters of the circuit elements and errors in 
the position control servo-mechanism affect the filter response, the actual system 
function, HT(h) ,  was measured for real values of A. This was done by dis- 
connecting the surface elevation signal from the input of the filter and using an 
externally generated sinusoidal signal as input. The position control feed-back 
signal came from a potentiometer geared to the paddle drive rack gear. The 
voltage output from this potentiometer was used as the output signal in deter- 
mining the system function. H z ( A )  and HT(A)  are shown in figure 4 for real 
values of A. 
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4.2. Determination of the resexion coeficient 
When a wave channel is operating sinusoidally, the surface elevation a t  points 
more than one wavelength from the channel terminations can be represented by 

N ( x ,  t )  = Re q(x)  e-iwt (43) 

where q(z) = a[eiao" + E e(-iaoz+c+i@ 1 (44) 

e is the reflexion coefficient and 6 is a phaso angle. Solving for e gives 

Values for 1qImax and lqlmin were found by attaching the output signal of the 
carriage-mounted wave-height transducer to a paper chart recorder and driving 
the carriage very slowly along the channel. 

4.3. Measurements 

When experiments with the wave absorber in operation were carried out, the 
motion of the absorbing paddle was sinusoidal for wave frequencies below eight 
radians per second. A t  higher incident wave frequencies, the absorber motion 

7 i+ 1 sec 

Time - 
FIGURE 5. A sample chart record for determining the reflexion coefficient. The quantity 
shown is the surface elevation 'us. time as measured by a wave height transducer that 
moves slowly along the longitudinal axis of the wave channel. For this record, the ratio of 
mean wave height to wavelength is 0.05 and the wave frequency is 2.07 Hz. The reflexion 
coefficient as given by (45) is 0.113. 

was sinusoidal shortly after motion began, but later quite a lot of second harmonic 
motion was observed. In  order to measure just the fundamental frequency at the 
moving wave-height transducer, the output signal from this transducer was 
passed through an adjustable low pass filter, set so the second harmonic was 
attenuated ten times as much as the fundamental. 

Reflexion coefficients were then measured for frequencies between three and 
thirteen radians per second for various wave-maker strokes. This was done with 
the moving wave height transducer connected to a chart recorder and using (45). 
A typical chart record is shown in figure 5. Figure 6 shows the theoretical reflexion 
coefficients for H,(h) equal to H y ( h )  and @(A) as well as the measured reflexion 
coefficients. 
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It can be shown that if a wa-ve pulse is incident on a wave absorber having 
a certain frequency band for wave absorption, that part of the pulse which is in 
the absorption band will be absorbed (see e.g. Milgram 1965). Experiments were 
carried out for a pulse wave generated by letting the wave-making paddle move 
through one half of a sinusoidal cycle. The surface elevation was measured as 

Radian frequency 

F~GURE 6. Reflexion coefficients. -, theory for H,(h) = Ht(h)  ; --,theory for H J h )  = H r ( h )  ; 
0 ,  experimental measurement. The numbers refer to the ratio o f  wave height (trough to 
crest) to wavelength for the points beneath them. 

a function of time at  a fixed point near the centre of the channel. This record as 
well as ths  record of absorbing paddle angle versus time are shown in figure 7.  

For purposes of comparison, similar records of the surface elevation were made 
with the absorber replaced by a ten degree sloping beach and by a rigid vertical 
wall. These records are shown in figures 8 and 9. 

4.4. Interpretation of experimental results 

The difference between the measured reflexion coefficient and that predicted 
by (35) for an absorbing system function H r ( h )  is less than 0.02 for most experi- 
mental points. The ma,jor exception to this occurs for a wave radian frequency 
of 9.25 radians/sec. Quite a lot of second harmonic motion was observed a t  this 
frequency and if the combined first and second harmonic amplitude resulted in 
non-linear effects in the servo-mechanism, such as limiting or overloading, errors 



Active water-wave absorbers 857 

in the fundamental frequency motion would occur. Calculations indicate a 
reflexion coefficient of 1.8 at a radian frequency of 18.5 radianslsec. Depending 
on the phase of the reflected wave, the finite length channel may or may not be 

0.36 cm 

0.12 radians 
FIGURE 7. The surface elevation near the centre of the channel and the paddle angle 
records for a pulse wave generated at one end of the channel and the active wave absorber 
at the other end. 

0.36 cm 

FIGURE 8. The surface elevation for the pulse of figure 7 with the wave absorber replaced 
by a loo sloping beach. 

0.36 cm 

FIGURE 9. The surface elevation for the pulse of figure 7 with the wave absorber replaced 
by a rigid wall. 

unstable with respect to standing waves a t  all frequencies for which the reflexion 
coeflicient lies between 1-0 and 2.0. The channel should be unstable with respect 
to standing waves a t  all frequencies for which the reflexion coefficient exceeds 
2.0, which occurs for frequencies between 19 and 23.5 radians per second when 
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H,(A) equals H f ( A ) .  The reason why this instability was not directly observed is 
attributed to  the fact that the position control servo-mechanism cannot properly 
follow the higher frequencies. 

The experiments with the pulse wave clearly indicate absorption over the 
designed frequency bandwidth. Significant reflexion was found a t  frequencies 
above and below this range. The reason why so little absorption resulted from the 
10 degree sloping beach is that the wave was of small steepness and the sloping 
beach uses non-linear effects to  cause wave breaking. 

5.  Conclusions 
The theoretical and experimental results given here indicate that it is possible 

to move a channel termination in a manner such that an incident wave will be 
absorbed. This is certainly expected due to  the validity of superposition of small 
waves and the wave-maker theory of Havelock (1929). 

A new conclusion that the termination motion needed t o  absorb waves can be 
obtained by a linear operation on a measured quantity of the fluid motion. This 
allows the construction of a self-actuating, active absorbing termination. 

In the synthesis of a wave-absorbing system function, three criteria were used 
in addition to the requirement that the synthesized function be a close approxi- 
mation to the ideal absorbing system function for the range of wave frequencies 
to  be absorbed. These additional criteria are that: (i) the complete system be 
stable, (ii) the absorbing system have zero response a t  a frequency of zero to  
prevent drift, and (iii) the absorbing system function HZ(A) have an amplitude 
less than the hydrodynamic system function H J h )  for high frequencies to  prevent 
high frequency noise. From the experiments it is clear that  a fourth criterion 
should be added; namely that the reflexion coefficient be less than 1.0 for all A. 
This would prevent high frequency amplification from causing significant second 
harmonic effects. 

The error between theory and experiment shown in figure 6 shows no definite 
trend. Some measured values of reflexion coefficient are larger than theoretically 
predicted and some are smaller. hlimilar scatter exists in the error as a function of 
wave amplitude; and therefore finite-amplitude effects were not important in 
affecting the reflexion coefficient of the first-order waves in the experiments. 

The ratios of wave height (pea$ to  trough) to  wavelength used in the experi- 
ments varied between 0.0009 and 0-0555. More second harmonic motion was 
observed for higher values of this ratio than for smaller values. The second 
harmonic was especially apparent when the reflexion coefficient a t  a frequency 
equal to  that of the second harmonic was large. The initial generation of second 
(and higher) harmonic effects is due to  non-linearities in the servo-mechanism and 
to  non-linearities in the fluid motion. The servo-mechanism aon-linearities result 
from requiring too much instantaneous power and could easily be overcome with 
a larger servo-mechanism. To deal with the non-linearities in the fluid mechanics 
higher order theories must be carried out. This has been done up t o  second order 
(Milgram 1965), but it is complicated both mathematically and from the stand- 
point of implementation. 
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Waves of small steepness are difficult to absorb with conventional sloping 
beaches and easier to absorb with an active wave absorber. The converse applies 
to large waves so the absorption methods are complementary. The agreement 
between theory and experiment for the linear wave absorber is sufficiently good 
to provide experimental confirmation of the theory. 

Appendix. Synthesis of wave-absorbing system functions 
It is assumed that a surface elevation transducer provides electric voltage 

equal to the surface elevation at x = -d.  This voltage serves as input to an 
electric filter having the system function &(A) and the output voltage from the 
filter actuates a position control servo-mechanism that drives the movable 
termination of the channel (figure 1). If H,(h) equals H J h )  over a specified 
frequency range, waves in this frequency range will be absorbed. The problem 
here is to closely approximate Hu(h) by &(A) over the specified frequency range. 
In order that H,(h) can be synthesized from lumped parameter circuit elements 
it will be sought in the following form : 

(A-a)  ( A - b )  ... 
( A - q ) ( h - r ) ( h - s )  ...’ He(& = ice 

where C, is a real constant. One criterion that will be used here is that the filter 
be stable, without the effects of the hydrodynamic feed-back. This criterion may 
not be necessary, but it is good design practice. This requires that no poles of 
H,(h) lie in the upper half of the h plane. To ensure that H,(h) does not have any 
neutrally stable frequencies, poles will be excluded from the real axis also. In 
order that the filter be realizable, all poles and zeros at  which Reh + 0 must 
occur in pairs symmetrically located with respect to the imaginary axis of the 
h plane. 

A computer program has been prepared which determines H,(h) in the form (A 1) 
so that the mean square error between &(A) and H,(h) is minimized over a pre- 
scribed frequency range. The program.requires a set of positions of the poles and 
zeros as input and it relocates the poles and zeros so as to minimize the mean 
square error. The program automatically adds a zero at h = 0 so the system will 
not drift. In  designing filters, it is advised that the number of poles exceed the 
number of zeros so that high frequency noise is attenuated. 
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